Diagnostic OH 'H-NMR Shift Differences in *syn* **and** *anti* **p-Hydroxy Ethers**

Bernd Landmann and Reinhard W. Hoffmann*

Fachbereich Chemie der Universitat Marburg, Hans-Meenvein-Strak, **D-3550** Marburg a.d. Lahn

Received September **29, 1986**

In a pair of diastereomeric β -hydroxy ethers the relative $H-NMR$ chemical shift of the OH proton is diagnostic for the syn or **mti** stereostructure. This is probably based on the presence of internally hydrogen-bonded structures. The rule is therefore re-
in den ¹H-NMR-Spektren cines Paares diastercomerer β-Hydrostricted to those compounds for which only this type of internal *in the compound term in the compounds* for *which* only this type of internal *xyether erlaubt eine syn/anti-Zuordnung der relativen* Konfiguhydrogen bonding is accessible.

While structural assignment to *cis* and *trans* isomers of variously substituted cyclic compounds can traditionally be effected by NMR spectroscopy assignment of *syn/anti* diastereomers¹ of open-chain compounds is more difficult. Frequently such compounds have to be converted into cyclic derivatives first, in order to ascertain their stereostructure²⁾. It is only recently that empirical rules emerge focussing on certain diagnostic features in the **NMR** spectra, which give hints as to the stereostructure of the diastereomer at hand. This holds particularly for those classes of compounds in which intramolecular hydrogen bonds favor one particular cyclic conformation, e.g. β -hydroxycarbonyl compounds³⁾, P-hydroxyalkyl fluorides'), y-hydroxy amines'), y-hydroxy ethers⁶⁾, or less pronounced 4-hydroxyalkynes⁷⁾. In this paper we describe some structure-specific features in the 'H-NMR spectra of *syn* (1) and *anti* β-hydroxy ethers (2).

Heathcock³ recently studied the related tertiary β -hydroxy ethers 3 and surmised the predominance of hydrogenbonded conformations, which was reflected in the ¹³C-NMR chemical shifts of the methyl group, an effect substantiated in other examples⁸⁾. No significant effect of this nature was, however, found in the ¹³C-NMR spectra of various compounds of the structures 1 or **2,** representing secondary fbhydroxy ethers.

The predominance of hydrogen-bonded conformations should also be reflected in different vicinal coupling conDiagnostische Unterschiedc der OH-'H-NMH-Venchiebungen bei *~yn-* und anti-&Hydroxyethern

Die relative chemische Verschiebung des OH-Protonen-Signals ration. Dies basiert vermutlich auf der Bildung von Strukturen mit intramolekularer WasserstofT-Brucke. Insofern ist diese Regel auf solche ß-Hydroxyether beschränkt, bei denen nur dieser Typ von intramolekularer H-Brücke ausgebildet werden kann.

stants $H - C^1 - C^2 - H$ for the *syn* and *anti* isomers 1 and 2 $(J_{syn} > J_{anti})$. This has been noted in some β -amino alcohols, glycols, and β -hydroxy ethers⁹. However, depending on additional coupling from the residues $R¹$ and $R²$ the relevant coupling constants are not always easily obtained.

We focussed on the chemical shift of the OH proton, which depends on the extent of hydrogen bonding¹⁰. The extent to which hydrogen-bonded conformations are pop ulated should be larger for the *syn* **(1)** than for the *anti* isomers $(2)^{11}$. Accordingly we noted structure-specific differences in the 'H-NMR chemical shifts of the OH signal. The data from our own studies as well as those kindly provided by other research groups are collected in Table 1. These data can be summarized by the statement $\delta_{OH}(syn)$ > $\delta_{OH}(anti)$, with the difference amounting to 0.48 \pm 0.3 ppm.

This generalization holds also for a number of compounds of general structure **4** (cf. Table 2). However, the limits of the above generalization are more important: With simple structures **1** or **2** we encountered only two cases, which fell out **of** line:

$$
R
$$
\n
$$
R
$$
\n
$$
R
$$
\n
$$
C
$$
\n

In view of other well-behaved examples with the *tert*butyldimethylsilyl protecting group in Table **3,** the abovementioned breakdown of the rule might therefore be confined to cases, in which the steric bulk of \mathbb{R}^3 is much larger than that of \mathbb{R}^2 . Since the above generalisation is based on the predominance of hydrogen-bonded structures 1 and **2,** it is no surprise that any structural feature that gives rise to

Table **1.** OH chemical shifts (6 values, CDCI,) of *syn* and anti B-hydroxy ethers

 $\overline{^{(a)}}$ CbO = Diisopropylcarbamoyl.

Table 2. OH chemical shifts (CDCl₃) of *syn-* and *anti-*4-(1-Hydro**xyalkyl)-2,2-dimethyl-l,3-dioxolanes (4)**

^{a)} Cyclohexylidene instead of isopropylidene derivative.

Finally, in situations such **as 8,** in which the direction of the hydrogen bond is not defined, the differences in δ_{OH} between the stereoisomers became **too** small **to** be of diagnostic value.

Nevertheless, we feel that with proper judgement the rules set forth above could be quite helpful in indicating the *syn* or *anti* configuration of a Phydroxy ether, when spectra for both diastereomers are available. It is comforting that the effect is not sensitive to adventitious moisture: Even saturating the CDCl₃ solution of *syn*- and *anti*-9 with water led to line broadening but not to an interchange in the relative chemical shifts of the OH signals²¹⁾.

Another aspect which is affected by the extent and geometry of hydrogen bonding was noted, but turned out not to be general for all the compounds examined: the vicinal coupling constant $H - C¹ - O - H$ was found to be larger for the *syn* isomer (\geq 5 Hz) than for the *anti* isomer (\leq 3 Hz) for the series of compounds **14-** 18 of Table 1 and, when reported, for the first six entries of Table 2.

We would like to thank the *Deutsche Forschungsgemeinschaft* for support of this study. We are grateful to Prof.'s *D. Hoppe. J. Mulzer, W. R. Roush, M. T. Reetz, F. Sato,* and *T. Oishi* for providing us with spectral data of numerous β -hydroxy ethers.

- 'IC. H. Heathcock, M. *C.* Pirrung, J. E. Sohn, J. Org. *Chem.* **⁴⁴ (1979) 4294; H. 0.** House, D. **S.** Crumrine, A. Y. Teranishi, **H.** D. Olmstead, J. *Am. Chem. SOC.* **95 (1973) 3310.**
- ') T. Kitazume, **Y.** Nakayama, *J. Org. Chem.* **51 (1986) 2795.**
- V. JBger, V. BUD, *Liebigs Ann. Chem.* **1980,** 101. V. Jager, R. Schohe, *Tetrahedron* **40 (1983) 2199,** and references quoted.
- **⁶¹**R. W. Hoffmann, U. Weidmann, *Chem. Ber.* **118 (1985) 3980.**
- **7, G.** Zweifel, G. Hahn, *J. Org. Chem.* **49 (1984) 4565;** footnote **9).**
- ⁸ R. W. Hoffmann, R. Metternich, *Liebigs Ann. Chem.* **1985**, 2390. R. Metternich, *Dissertation*, Univ. Marburg 1985.
- **9,** M. Fujita, T. Hiyama, J. Am. *Chem. Soc.* **106 (1984) 4629.**
- **lo)** N. F. Chamberlain, *The Practice of NMR Spectroscopy.* **p. 91,** Plenum Press, New York **1974.** H. Gunther, *NMR-Spektroskopie,* p. **91,** Thieme-Verlag, Stuttgart **1983.**
- **'I)** M. van Duin, J. M. A. Baas, B. van de Graaf, J. Org. *Chem.* **⁵¹ (1986) 1298.**
- ¹²⁾ R. W. Hoffmann, B. Kemper, R. Metternich, T. Lehmeier, *Liebigs Ann. Chem.* **1985,2246.**
- **13)** D. Hoppe, Univ. Kiel, personal communication.
- **14)** T. Oishi, Riken, Wako, Saitama, Japan, personal communication.
- ¹⁵⁾ M. T. Reetz, K. Kesseler, personal communication. cf. K. Kesseler, *Dissertation,* Univ. Marburg **1986.**
- **16)** J. Mulzer, **A.** Angermann, W. Miinch, *Liebigs Ann. Chem.* **1986, 825;** and J. Mulzer. personal communication.
- **j7)** F. Sato, Tokyo Institute of Technology, personal communication.
- ¹⁸⁾ R. W. Hoffmann, B. Landmann, *Chem. Ber.* 119, 2013 (1986).
- 19) W. R. Roush, M. A. Adam, A. E. Walts, D. J. Harris, J. Am. *Chem. Soc.* **108 (1986) 3422.**
- *M,* J. Mulzer, P. de Lasalle, A. FreiDler, *Liebigs Ann. Chem.* **1986, 1152.**
- ***I)** Experiment kindly carried out by **S.** Dresely.

[**234/86]**

S. Masamune, **S.** A. Ali, D. **L.** Snitman, D. *S.* Garvey, *Angew. Chem.* **92 (1980) 573;** *Angew. Chem. Int. Ed. Engl.* **19 (1980) 557.** See for example Y. Yamamoto, T. Komatsu, **K.** Maruyama, J.

Org. Chem. **50** (1985) 3115, and references quoted in ref.⁶.